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Using the algebraic properties of Poisson brackets, we extend the three-dimen- 
sional brackets (for a single free particle) to conform to the demands of special 
relativity. This yields, in an essentially unique way, the manifestly covariant 
extension [x,,pv] =6~v +p~pv/m2c 2. Position and time then become fully dy- 
namical variables expressible in terms of the canonical conjugate qi and Pi and 
the time parameter 0 as x i = q~ +p~(q-p)/ra2c 2 and t = 0 + E(q" p)/m2c a. In 
the quantized version, the length associated with a particle of mass rn is shown 
to be an integral multiple of the Compton wavelength 2 c = rime. 

1. INTRODUCTION AND SUMMARY 

Traditionally, the algorithm for quantization of a classical system 
proceeds by first casting the dynamics into the Hamiltonian Poisson 
brackets (PB) form (Dirac, 1958). The classical dynamical variables are 
then replaced by Hermitian operators satisfying commutation relations 
such that the quantum commutator of a pair corresponds to the classical 
PB of the pair. As is well known, this procedure is covariant under 
Galilean transformations from one inertial frame to another. In contradis- 
tinction, the PB (or the corresponding commutators) are changed by a 
Lorentz boost. Thus, taking the simplest case of a single free particle with 
energy E = (p2+ m2)~/2, we find that under the transformation 

x"  = y ( x  - uO,  t '  = ~( t  - u x )  

p'~ = 7(p,~ - uE) E" = y(E - up,,) (I) 
~: = (1 - u 2) -1/2 
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the PB [x, Px] = 1 transforms into 

Ix', p ' ]  = [y(x - ut), y(px - uE)] = ? 2(1 - upx/E) = yE' /E (2) 

which differs from 1 if the velocity u is not zero. (We are using units such 
that c = h = 1. Occasionally we will restore c and h in the formulas.) It is 
thus apparent that, even in the simplest case, the Einsteinian principle o f  
relativity is incompatible with the Hamiltonian formalism. {Nor is it difficult 
to see the general reason for this incompatibility. Under canonical transfor- 
mations, which are special transformations of  phase space at a given 
time, the PB transform homomorphically, that is, if A ( t ) ~ A ' ( t )  and 
B(t) ~B ' ( t ) ,  then [A(t), B(t)] ~ [A'(t), B'(t)]. But in order for special rela- 
tivity to prevail we need this correspondence at different times, namely, 
[A(t), B(t)] ~ [.4"(t'), B'(t')].} 

Facing this impasse, the general attitude was to endow the time 
parameter the status of  an independent fourth dynamical coordinate on the 
same footing as that of the space coordinates. Some of  the difficulties 
encountered in this approach are detailed in Goldstein (1980). Our goal in 
the present work is less ambitious. Rather than imposing a totally new role 
on the time as a fourth dynamical coordinate, we shall stay within the 
familiar three-dimensional world [Minkowski notwithstanding2], and ask 
whether we can use the algebraic properties of the PB to extend the 
brackets to higher velocities in a way compatible with special relativity. The 
requirement of covariance will then be used to derive rather than to impose 
conditions on the time and space variables. It should be noted that there is 
nothing in the Lorentz transformation or in Minkowski's 4-world formula- 
tion which entails an identical role to time and space. After all, time enters 
as a fourth component of  a world vector with an imaginary coefficient or 
with a metric different from that of  space. 

It turns out that the sought three-dimensional extension of  PB can be 
achieved in an (essentially) unique way yielding the manifestly covariant 
extension 

P,Pv 
[x~,,pv] = 6uv + m2c---- 5 (3) 

We use 4-vectors such as (x~)=  (x, ict), ( p u ) =  (p, iE/c). Roman indices 
i , j , . . ,  denote space components 1, 2, 3. Greek indices #, v . . . .  run through 
1, 2, 3, 4. As equation (3) shows, the first corrections due to higher veloc- 
ities are of  the order of v2/c 2. An amusing (in our language ".superrelativis- 
tic") treatment of  equation (3) retaining only p~px/m2c 2 on the r.h.s. 

2"Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, 
and only a kind of union of the two will preserve an independent reality" (Minkowski, 1908). 
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appears in a different context ("quantization in the large") in the work of 
Greenberger (1983). As can be checked using Jacobi's identity, validity of 
equation (3) with [Pi, Pj] = 0  implies [xi, xj] 5 0  for i ~ j .  Thus in our 
relativistic quantum mechanics the x; no longer commute and a position 
representation is not possible. In fact, in terms of the canonical coordinates 
qi and p;, where qi is the coordinate conjugate to the momentum pi 
satisfying [qi, Pj] = 6ij and [qi, qj] = 0, the space and time variables become 
(like the angular momentum L = q • p) dynamical variables expressible as 
x~ = x~ (q, p), t = t(q, p). Classically, we find 

and 

Pi 
xi = qi + ~ (q" P) (4) 

v2/c 2 ~ =  1 
ih ~o = ih ~o + [t, E] = /h l +  l~-fi-fc~j ih l _ v2/c 2 

variable A(q, p, O) is 

OA 
ih A(q, p, O) = ih TO + [A, E] 

For example, 

(7) 

(8) 

Since position and time no longer commute, it is meaningless to ask about 
the amplitude to be found at x at time t. Rather, one could legitimately ask 
about the amplitude ~b(q, 0) d3q [or ~,(p, 0) dap] to find the particle at time 
0 within d3q around q (d3p around p). We end our summary of partial results 
by the following surprise. The fact that x behaves like a vector under 
rotations together with the commutation relation Ix, y] = (ih/m2c2)Lz, etc., 

E 
t = 0  + ~ ( q ' p )  (5) 

where the time parameter 0 can be chosen to be a "c-number" independent 
of q and p. It can be shown that under the Lorentz transformation (1), the 
product OE remains invariant, that is, 

OE = O'E" = zinc 2 (6) 

where z is the proper time of the particle. In quantum mechanics x i and t 
are supposed to be Hermitian operators. This can be achieved by sym- 
metrization of equations (4) and (5). Thus, for example, 

1 
Xi = qi "+" 2m2c-----5 {P/(q " P) + (P"  q)P," } (4') 

In terms of the time parameter 0, the equation of motion of a dynamical 



1602 Tikochinsky 

entail quantization of the length. Thus, for a particle of mass m, the length 
is measured in units of Compton wavelength 2c = h/mc. 

Of course, all this is very preliminary, pertaining to a single free 
particle. Where it could lead to is not at all clear. Nevertheless, I find the 
partial results intriguing enough to be disclosed to the public even at this 
stage. In the next sections I bring the detailed arguments leading to the 
results quoted above. 

2. D E R I V A T I O N  O F  T H E  E X T E N D E D  P O I S S O N  B R A C K E T S  (3)  

In this section we use the algebraic properties of PB, namely 

[A, B] = - [B ,  A] 

[A,/~8 + ~,c] =/~[A, 81 + ~[x, c]  
(9) 

[A, BC] = [A, B]C + B[A, C] 

[[A, 81, C] + [[C, A], 8] + [[8, e l ,  A] = 0 

together with the requirements of covariance to extend the PB to higher 
velocities. Our derivation assumes classical commuting quantities, but the 
same derivation applies mutatis mutandis to operators (working in the v 
representation). It is natural to try first the following assumption: 
[Pi, Pj] = 0 ,  [x, py] = [x, pz] = 0, and [X, px] =f(p) ,  where f (p)  ~ 1 as p~0 
to regain the low-velocity limit. It fails. Indeed, with the aid of equations 
(9) we find that the energy E = (pZ + m 2) 1/2 (expanded in powers of the p;) 
satisfies 

[x, E] = f (p)  ~p = f (p)  ~ (10) 

Also, from [x', py] = [7(x - ut), py] = 0 it follows that [t, py] = 0. Hence, 

[t', Px] = [y(t -- ux), 7(Px -- uE)] 

= - 7 :uf(p)( 1 - upx/E) = - uyf(p)E'/E 4 0 

unless u = 0. 
Our next try is to work with velocities rather than momenta. That is, 

we assume [vi, vj] = 0, [x, vy] = Ix, vz] = 0, and [x, vx] =f(v) /m,  where 
f (0 ,  0, 0) = 1. From this assumption and equations (9) it follows that for 
any analytic function g(v) -= g(Vx, Vy, v~) we must have 

[x,g(v)]= f(v) ~Vx (11) 
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In particular,  since 

0 1 Vx 
Ov~(1 --v2) 1/2 (1 __/)2)3/2 

we find for the components  o f  m o m e n t u m  p and the energy E, where 

that  

mt~ i m 
Pi ( 1 - / ) 2 )  1/2 and E - (1 - v2,) 1/i = (p2 + m 2) 1/2 ( 1 2 )  

1 
[x, px] = f ( v )  (1 - v2) m 

/)x/)y 
[x, py] = f ( v )  (1 - v2) 3/2 

/)xVz 
[x, p~] - - f (v )  (1 --/)2)3/2 

Vx 

/)2 ] 1 - Vy 2 - / ) 2  

+ (1 --v2)3/2j = f ( v )  (1 -/)2)3/2 

(13) 

we find, for  the 
vanish], that  

/)y 
[t, py] = f ( v )  ( 1 - v2) 3/2 (16) 

Substituting this result in equat ion (14) and using (15), we have 

f ( v )  =f(v')~/(1 - uv~) for  any u (17) 

special case u = vx [which causes the r.h.s, o f  (14) to 

Vx - u , 1 Vy , 1 vz 
v '~-  1 - u v x '  vy 7 1 - u v  x vz y 1 - u v x  

1 - v'2 = ( 1 - v2)( 1 - u 2) 1 _ 7( 1 - UVx) 
(1 - u v x )  2 ' (1 - -v '2)  1/2 (1 _/)2)1/2 

(15) 

[x, E]  = f ( v )  (1 - v2) 3/2 

We now demand  covariance. Starting with 

[x',f'~l=[7(x-ut),pyl=~, V)(l_v2)3/2 u[t, fy] 

V;Vy (14) 
= f ( u  (1 -- /)t2)3/2 

and using the t ransformat ion properties o f  velocity under  a boost  in the x 
direction 
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Hence, for u = v~ we obtain the functional equation 

( , , )  
f ( v x ,  Vy, Vz) = (1 -- v]) ' /2f  O, (1 --v2) '/2' (1 --v2) '/~ 

Similarly, demanding the covariance of [x', p~], we obtain 

Vz 
It, p~] = f ( v )  ( 1 -- v2) 3/2 

By symmetry one expects that 

[t, p~] = f ( v )  

and 

/)x 
( 1 - v 2)  3/2 

(is) 

(19) 

(20) 

and hence 

[t, E 2] = [t, p2x +p2  + p 2  + m 2] = 2f(v) p ' v  
( 1 -- V 2) 3/2 

/)2 
= 2f(v)E (1 -/)2)3/2 - 2E[t, El  (21) 

/)2 
[t, E] = f (v )  (1 -/)2)3/2 (22) 

It can be checked that these results indeed follow from the covariance of 
[x',p'~] and [x ' ,E '] .  Equations (16), (19), (20), and (22) show that 
f (v)  =-f(vx, v e,/)~) must be a symmetric function of its arguments. We shall 
now show that the only solution of equation (18) which is a symmetric 
function of its arguments and satisfies f (0 ,  0, 0) = 1 is 

f (v)  = ( 1 - v 2) 1/2 (23) 

Indeed, exchanging vx ~ Vy in equation (18), we find 

/)2"~ 1/2 le(0 /)x /)z ) (24) 
f(Vx, /)y, /)~) = (1 - y: j \  , ( 1 ---2/)y) ,/2 ' ( 1 _ v2) 1/2 

Hence, for vx = 0, 

( 0 , 0 , 2 , / 2  /)z ) (25) f ( O , / ) y , / ) ~ ) = ( 1 - V y )  ' f  (1 s v-y2)l/2 

Reducing (25) further to a single independent argument by putting vz = 0 
(and exchanging Vy ~ v~), we finally have 

f(0,/)e, 0) = f ( 0 ,  0, Vy) = ( 1 - / )2)  t/2f(0, 0, 0) = ( 1 - v 2) ,/2 (26) 
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Using equations (18), 
number of independent 

f(Vx, Vy, v~) = 

(25), and (26), we can successively reduce the 
arguments in f (vx ,  vy, v~) to obtain 

/ 
(1 - v~)"~f [0 ,  

(1--v  2)l/z 1 1---z  
- -V x 

Vy Vz I 
(1 --5v~)'/2' (1 --v2) '/~ 

v z 1 ) 
•  0, 0, (1 ---'v~) v2 (1 - v2/(1 - v~)) 1/i 

= (1 - V x  - v y )  0,0, (1 - v  x2 _ v~)1/2 

= - ~ - v ~ )  ~/~ 1 v z  2 2 (1 v x 1 - v ~ - V y J  

2--132)1/2 (1 --V2) 1/2 (27) = (1 - v ~  - v y  = 

Equations (13), (16), (19), (20), (22), and (23) determine completely the 
extended PB in terms of the velocities. Returning to the momenta via 
equation (12) and restoring the velocity of light e, we find the manifestly 
covariant expression 

PuP____2_~ (28) [x~,pv] = fur + m2cZ 

To obtain the corresponding quantum mechanical commutator, we must 
multiply the r.h.s, by ih. Thus (using the same notation for PB and 
commutators), 

+ P~,Pv ~ (29) [xu,p~] =ih  ~,~ m2c2 ] 

3. POSITION AND TIME AS DYNAMICAL VARIABLES 

Equation (29) has been derived under the assumption [Pt, Pj] = 0 that 
the components of linear momentum commute. This can no longer be true 
for the components of the position vector x; or, for that matter, the 
position and the time t. Indeed, using the Jacobi identity 

[x~, [x~,pv]] + [Pv, [x~, x.]] + [x., [p .  x~]] = 0 (30) 

and equation (29), we find 

h 2 
[[x~, x~,], Pv] = m~c2 (6~vp~, - 6~,vp,~) (31) 
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This result can be understood, provided we give up the identification of the 
position coordinate x; and the time coordinate t with the canonical 
coordinate qi and the time parameter 0. Indeed, returning to classical 
physics, let q~ denote the coordinate conjugate to p~ satisfying 

[q. qj] = 0, [q- P:] = fie (32) 

and let us look for functions x~ = x; (q, p) and t = t(q, p) such that equation 
(28) is satisfied. Using the original definition of PB, namely 

(c3A OB c3A OB'~ 
[ A ' S ] = ~ i  -~q~ Op, Op, Oq, ] 

we find 

Ox p~ 
[x, p~] - Oqx - 1 + m2c----- ~ 

[x, py] = Sqv - PxPy 
m2c 2 

[x, Pz] = ~f- P~Pz 
oq~ 

(33) 

(34) 

The solution of these equations subject to the boundary condition x ~ qx as 
v/c ~ 0 is 

or, in general, 

x = q x  + Px q ' P  (35) 
m2c 2 

P i  ~ x ; = q ; + ~ q  p (36) 

Equation (36) can be easily inverted to express q/in terms of xj and pj. 
Indeed, multiplying (36) by p; and summing over i, we find 

x ' p = q ' p  l+m---~c 2 = q ' p m 2 c  4 (37) 

Thus 

Similarly, the equations 

qi = xi - - ~  x" p (38) 

dt Epi 
[t, Pi] Oqi m2c4 (39) 
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with the boundary condition t ~ 0 as v /c  ~ 0 are solved by 

E 
t = 0 + m---~c4 q �9 p (40) 

where 0 is a time parameter satisfying 

[0, p i ] = 0  and [0, q l ] -*0 as v / c - . O  (41) 

The last equation shows that 0 can be chosen as a constant dynamical 
variable (independent of q and p), that is, a "c-number" satisfying 

[0, q,] = [0, p~] = 0 (42) 

The transformation properties of  0 under a Lorentz boost are particularly 
simple. Using equation (37) to replace q ' p  in equation (40) by x ' p ,  we 
find 

OE = t E  - x . p = O 'E '  = ~mc 2 (43) 

where the last equality is obtained by transforming to the particle's rest 
frame. 

We now turn to the equations of  motion. For a free particle, we have 
by equation (43), 

Hence, using 

dO = dt d x  P = dt I - -  (44) 
E 

Vx dx  1 
[x, E] - 1 - v2/c 2 dt 1 - v2c 2 (45) 

we find 

dt 
d-0 = [x, E] (46) 

Substitution of  this result in equation (38) yields for a free particle 

dq~= 
dO [ql, E]  (47) 

together with 

dP_d= 
dO [p,-, E] = 0 

Thus, for a general dynamical variable A(q ,  p,  0), we find 

,A OA _r A E 0AOE3 oA 
-d-~=~-~+)__][~q~p~ c3pi Oq,, ] - ~ + [ A , E ]  

(48) 

(49) 
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As mentioned in the introduction, in the quantum mechanical case one 
should replace expressions (36) and (40) by the symmetrized Hermitian 
operators 

1 
x; = q, + 2-~c2 {p;(q �9 p) + (p" q)p;} (50) 

and 

1 
t = 0 + ~  { E ( q ' p )  + ( p ' q ) E }  (51) 

4. QUANTIZATION OF L E N G T H  

By construction, q and x behave as vectors under rotation. Indeed, it 
can be checked that the corresponding operators satisfy the expected 
commutation relations with the components of  the angular momentum 
L = q x p. That  is, 

[L;, xj] = iheukXk (52) 

In addition, it is not difficult to show that the noncommuting operators x; 
satisfy 

ih 
[x;, xj] = ~ e,jkLk (53) 

(Snyder, 1947). 3 Thus, the six Hermitian operators xi, Li form a closed 
algebra. By forming suitable linear combinations 

o~xi +flLi = 3", (54) 

where 3",. are supposed to be angular momentum operators, it is possible to 
decompose this algebra into a direct sum of  two O(3) algebras. Indeed, the 
equation 

[ax + flL~, o~y + flLy] = ih[az + flLz] (55) 

has two solutions ct = +_mc/2 and fl = 1/2 corresponding to 

mc 1 
J! +-) = ++_--~- xi + ~ Lf (56) 

It is easy to check that [J~+), J)-)] = 0. 

3There is a marked similarity between some of the results in the present work and those of 
Snyder's. The two works differ, however, in their basic assumptions (e.g. three-dimensional 
versus four-dimensional dynamic spaces). I am grateful to Editor David Finkelstein for 
drawing my attention to the work of Snyder. 
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Since [Lz, z] = 0, the operators L~ and Jz (where J~ = J~+)) commute 
and thus can be diagonalized simultaneously. It therefore follows that the 
only possible outcomes for 

1 
z = - -  (2Jz - Lz) (57) 

mc 

aFe 

h 
z = - -  (2/~ - M) (58) 

mc 

where 2/~ and M are integers. Thus, for a particle of  mass m, the length is 
an integral multiple of  the Compton wavelength 2c = h/mc. 
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